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A note on envelope theorems and subderivatives

YAO Masayuki1

Abstract

In this note, we consider parameterized optimization problems with
the abstract choice set. We characterize the value function using
subderivatives. From this result, we derive one of Milgrom and Segal's [1]

results.

1. Introduction

The envelope theorem states the sufficient condition for the value of a
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parameterized optimization problem to be differentiable with respect to
the parameter and provides a formula for its derivative. The envelope
theorem is a standard tool in economic analysis (see, for example, Mas-
Colell, Whinston, and Green [2]). Various approaches have been studied
on this issue in recent years (e.g., Milgrom and Segal [1], Morand,
Reffett, and Tarafdar [3], Oyama and Takenawa [4], Marimon and
Werner [5]).

Among these, Milgrom and Segal [1] are the major milestone. The
traditional envelope theorem requires the choice set to have convexity
and topological properties (see, for instance Benveniste and Scheinkman
[6]). In contrast, Milgrom and Segal [1] make no such assumptions on
the choice set. The reason for using such an abstract choice set is to
answer the demands of the models used in recent economics, such as
mechanism design.

Milgrom and Segal [1] derive various results, one of which is the
characterization of the left and right derivatives of the value function
(Milgrom and Segal [1], Theorem 1). It is known that various types of
derivatives can be obtained by taking various limits of a function called
the difference quotient. (see, for example, Rockafellar and Wets [7]).
The right and left derivatives used by Milgrom and Segal are only one of
these. They are special cases of the subderivatives.

In this paper, we derive the characterization of the value function
using subderivatives. We then derive the Milgrom and Segal's [1] result
as a corollary of our result.

The reminder of the paper is organized as follows: In Section 2
we prepare to derive our result. The content of this section relies on
Rockafellar and Wets [7]. In Section 3, we present our result and use it

to show the Milgrom and Segal's [1] result.
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2. Preliminaries

Let R=(c,0) be a real line and let R” be an n-dimensional Euclidean
space. In this paper, we consider expanded real valued functions. That is,
the functions take values in the expanded-real-line R= [ o] instead of R.

For a function f: R” — Rat a point ¥ € Rwhere £ (¥ ) is finite,

thatis, f(x) €R, the difference quotient function is defined by
f(x+tw—-f(X)
. for

A f(xX)(w) = T *0.

By taking limits of different types of the difference quotient, we can get
different types of derivatives.

We use the notion 7 N0 7 —0 with 7 > 0. Using this notion,
we define subderivatives as follows:

Definition 2.1. For a function f: R” — Rat a point ¥ € R” where f (¥ )is
finite, the lower subderivative function d £ (x):R” — R is defined by

d f(x)(w)=liminf ;0 w—i Acf (X)(w),
and the upper subderivative function d + f (¥ ): R” — R is defined by

d+t £ (x)(w)=lmsup 0 w—i Acf (X )(w).

The value of d £ (¥ )(w)(resp. dT £ (¥ )(w)) is called the lower (resp.
upper) subderivative of fat x for w.

We write d £ (x)simply as df (x)and call it the subderivative
function when no confusion will arise. From the definition and the notion,
the following relationship holds between the lower subderivative and the
upper subderivative function:

—d (=f)(x)(w) = = iminf ¢.0,w—7 Acf () (w)

=limsup ¢.0,w—u Acf (%) (w)

=d*f(x)(w).
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We also use the notion 7/ 0& 1 —0 with 7 <0. Using this
notion, we can introduce the following:

—df (x)(w) =liminf +-0,w—i Ac (=) (Z)(-w),

d(=f)(x)(w) =limsup 10 w—n A (= )(x)(~w).

In the reminder of this section, we consider functions whose
domain is R. For a function f:R — Rat a point x € R where £ (x) is finite,
the subderivative functions (¥ )are determined from their values at w=
+1. This holds because df (¥ ) is positive homogeneous (see Rockafellar
and Wets [7], Theorem 8.18). There is no need to take the limits w —>w
in the subderivative functions, so the following holds:

df (%)(1)= liminf ~0A < £ (%) (1),
—d(=f)(x)(1)=limsup ~0A< f (¥)(1),
~df (%)(—=1)= liminf r 10 A(—f (%) (~1), Sy
d(=f)(%)(=D=limsup r~0A-(=/)(%)(-1).
When df (x)(1)=—d (=f) (x) (1) (resp. —df (x) (=D =d (=f ) (x)(=1))
and the value is finite, we say that fis right (resp. left) differentiable at x.
The value
[+ (x)=df()(D=-d (=) (X))
is called right derivative of f at x and the value
fL(x)= =df(x)(-1D)=d (- N(Z)(-1)
is called left derivative of f at x. If f+(x)=f'(x), we say that fis
differentiable at x. We write the common value as f'(¥) and call it the

derivative.

3. Results

Let X denote the choice set and let Y be the parameter set. Letting /: X

X Y— R denote the parameterized objective function, the value function
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v: Y— R and the optimal choice set-valued function M:Y = X are given by

v(y) = supzrex f(xy),

My)=lxe X : flxy)=v(»]}. 2
We denote by dyf(x,»y) the subderivative function associated with f (x,)
aty.
Theorem 3.1. Suppose Y= R”. Take y € Y and < M(y), and suppose
that £(x*, ¥ ) is finite. Then,

dv(y)(w) 2dy f &,y ) (W),
—d(=0)(3) W)=z —dy(=f)y)(w),
—dv(y)(-w) < —dyf & y)(-w), 3

d(=o)3)(-w)<dy (=) 5 )(-w).
Proof. Using (2), we have that for any w € Y that converges to w and
>0,

v+ w2 f (Y +Tw).

Since f (x*,y) =v (v),

v+ w) —o@2f Wy tw) —f (@)
holds. Dividing both sides by 7,

v(yttw)—v(y) S (& y+Tw)— f(a,y)
T - T : 4)

Taking the lower limit as 7 ~ O and w — w on both sides of this
Inequality, we get that
dv(y) (W)= dyf (& y)(w).
Taking the upper limit as 7 0 and w— w on both sides of the inequality
(4), we also get that
—d (=) (w)= —dy(=x"y) (@).

Using similar arguments, the remaining inequalities can be derived. [ ]

Using our result, we can derive the Milgrom and Segal's result

as a corollary.



Corollary 3.2. (Milgrom and Segal [1], Theorem 1). Suppose Y=1[0,1].

Take t€ Y=1[0,1] and x* < M(¢), and suppose that the partial derivative
of (x"t)
ot

t<1 and v is right differentiable at ¢, then

of (x" 1)
ot '

of the objective function with respect to the parameter exists. If

v+ () >

If t > O and v is left differentiable at ¢, then

o ()< %ﬁ‘*’ﬁ.

If t<(0,1) and v is differentialble at ¢, then

of (x"1)
ot

v'(t) =

of (x*p)
ot

t'—t> 0. Using the first two inequalities in (1) and (3), we have that
dv(t)(1) > dy f (o 0(D),
—d(=0)@)(1) = —dy (=) (1).

Form the assumptions, the left-hand sides of these inequalities are equal to

Proof. Since

exists, £ (¢*,t) is finite. If < 1, take t'€ (t,1) and 7 =

v4 (1) and the right-hand sides are equal to of gf‘t) . Then, we obtain that
, of (x* 1)
vy () > YR (5)

Ift>0, take t'=(0,¢) and 7 =¢t'—t <0. Using the last inequalities in (1)
and (3), we have that
—dv(t)(=1) < —dy f (" D(-1),
d(=v)()(=1) <dy )" )(=1).

Using the assumptions, we obtain the

of (x*t)

v (1) < 5 6)
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If t< (0,1) and v is differentiable at ¢, »'(¢) =04+ (¢) =0"_(¢). Using (5) and
(6), we have

_of (x*2)

v’ (1) ot

0J
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